CONTENTS

Algebra

Chapter 1 Exponents and logarithms

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Laws of exponents</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Conversion between exponents and logarithms</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Logarithm laws</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Exponential and logarithmic equations</td>
<td>10</td>
</tr>
</tbody>
</table>

Chapter 2 Sequences and series

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Arithmetic sequences and series</td>
<td>17</td>
</tr>
<tr>
<td>2.2 Geometric sequences and series</td>
<td>22</td>
</tr>
<tr>
<td>2.3 Sigma notation</td>
<td>28</td>
</tr>
</tbody>
</table>

Chapter 3 The binomial theorem

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Pascal’s triangle</td>
<td>32</td>
</tr>
<tr>
<td>3.2 Binomial theorem</td>
<td>32</td>
</tr>
</tbody>
</table>

Functions and equations

Chapter 4 Introduction to functions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Finding function values</td>
<td>40</td>
</tr>
<tr>
<td>4.2 Domain and range</td>
<td>41</td>
</tr>
<tr>
<td>4.3 Composite functions</td>
<td>43</td>
</tr>
<tr>
<td>4.4 Inverse functions</td>
<td>46</td>
</tr>
</tbody>
</table>

Chapter 5 Graphs of functions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Quadratic functions and their graphs</td>
<td>52</td>
</tr>
<tr>
<td>5.2 Reciprocal functions and rational functions</td>
<td>65</td>
</tr>
<tr>
<td>5.3 Graphs of inverse functions</td>
<td>68</td>
</tr>
<tr>
<td>5.4 Transformations of graphs</td>
<td>72</td>
</tr>
</tbody>
</table>

Chapter 6 Exponential and logarithmic functions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Exponential and logarithmic functions</td>
<td>85</td>
</tr>
<tr>
<td>6.2 Applications</td>
<td>93</td>
</tr>
</tbody>
</table>
Circular functions and trigonometry

Chapter 7 Radian angle measure and sectors
- 7.1 Definition of a radian 100
- 7.2 Length of an arc and area of a sector 102

Chapter 8 Trigonometric functions
- 8.1 Sine, cosine, and tangent functions 110
- 8.2 Trigonometric identities 123
- 8.3 Graphs of trigonometric functions 128
- 8.4 Applications 137
- 8.5 Trigonometric equations 144

Chapter 9 Trigonometry of non-right angled triangles
- 9.1 The cosine rule 153
- 9.2 The sine rule 156
- 9.3 Area of a triangle 160
- 9.4 Applications to geometric problems 165

Vectors

Chapter 10 Vector algebra
- 10.1 Basic vector concepts 174
- 10.2 Algebraic operations of vectors in component form 178
- 10.3 Scalar products 192

Chapter 11 Vector equations of lines
- 11.1 Vector equation of a line 203
- 11.2 Angle between two lines 209
- 11.3 Relationships between two lines 214
Calculus

Chapter 12 Differential calculus
- **12.1 Derivatives of functions**
- **12.2 Differentiation rules**
- **12.3 Higher order derivatives**

Chapter 13 Applications of differentiation
- **13.1 Tangents and normals**
- **13.2 Increasing and decreasing functions**
- **13.3 Local maximums and minimums of functions**
- **13.4 Concavity of functions**
- **13.5 Graphical behaviour of functions**
- **13.6 Optimization**
- **13.7 Kinematics**

Chapter 14 Integral calculus
- **14.1 Indefinite integrals**
- **14.2 Integration by inspection and substitution**
- **14.3 Definite integrals**

Chapter 15 Applications of integration
- **15.1 Areas under curves**
- **15.2 Volumes of revolution**
- **15.3 Kinematics and combined integration problems**

Statistics and probability

Chapter 16 Statistics measures
- **16.1 Basic concepts**
- **16.2 Measures of central tendency for ungrouped data**
- **16.3 Measures of central tendency for grouped data**
- **16.4 Quartiles and percentiles**
- **16.5 Measures of dispersion**
- **16.6 Transformations on data sets**
- **16.7 Frequency curves and histograms**
- **16.8 Box and whisker plots**
Chapter 17 Bivariate statistics
17.1 Linear correlation of bivariate data 359
17.2 Use of the equation of the regression line for prediction purposes 364

Chapter 18 Probability
18.1 Introduction to probability 368
18.2 Combined events 369
18.3 Venn diagrams and tree diagrams 371
18.4 Conditional probability and independent events 379

Chapter 19 Probability distributions
19.1 Discrete random variables 392
19.2 Binomial probability distribution 398
19.3 Normal distribution 403

Mathematical symbols and notation 415

Practice test 1
Practice test 2

Answers and mark schemes can be downloaded for free at www.ntk.edu.hk.
In Paper 1 of the IB SL exam, you are expected to know the properties of the graphs of some basic functions. In Paper 2, you may also need to use a graphic display calculator (GDC) to analyse the graphs of more complicated functions.

Basic terminology:

y-intercept: The intersection of the graph of \(f(x) \) and the \(y \)-axis

x-intercept: The intersection of the graph of \(f(x) \) and the \(x \)-axis

Asymptote: A straight line whose distance to the graph of \(f(x) \) tends to zero (that is, the graph of \(f(x) \) gets closer and closer to the asymptote.)

EXAM TIP
The \(x \)-intercept and \(y \)-intercept can usually be found by a GDC in Paper 2.

5.1 Quadratic functions and their graphs

General form

The general expression of a quadratic function is \(f(x) = ax^2 + bx + c \), where \(a \neq 0 \). Its graph is in the shape of a parabola. The orientation of the parabola is determined by the sign of the coefficient \(a \) of the \(x^2 \) term. The lowest or highest point on the parabola is called the vertex (plural: “vertices”).

If \(a > 0 \), the parabola opens upward.

If \(a < 0 \), the parabola opens downward.

- e.g. \(f(x) = x^2 + 2x \)
- e.g. \(f(x) = -x^2 + 2x + 10 \)
From the graphs above, you can see that the graph of a quadratic function is symmetric about a vertical straight line through the vertex. The equation of the line is given by:

\[x = -\frac{b}{2a} \]

This is given in your formula booklet.

This vertical line is called the **axis of symmetry**.

Vertex form

By **completing the square**, we can rewrite the quadratic function \(f(x) = ax^2 + bx + c \) in **vertex form**.

If \(f(x) = ax^2 + bx + c \), then \(f(x) \) can be written as \(f(x) = a(x - h)^2 + k \), where \((h, k)\) are the coordinates of the vertex of the graph of \(f \).

Example 5-1

Find the coordinates of the vertex of the graph of

- \(a \) \(y = x^2 + 6x - 1 \)
- \(b \) \(y = x^2 - 3x + 5 \)

Solution

- \(a \) \(y = x^2 + 6x - 1 \)

 \[= (x + 3)^2 - 9 - 1 \]

 \[= (x + 3)^2 - 10 \]

 Vertex is at \((-3, -10)\).
b \(y = x^2 - 3x + 5 \)

\[
= \left(x - \frac{3}{2} \right)^2 - \frac{9}{4} + 5
\]

vertex is at \(\left(\frac{3}{2}, \frac{11}{4} \right) \).

If the coefficient of \(x^2 \) is not 1, we have to perform a couple of extra steps to obtain the vertex form:

Example 5-2

Find the coordinates of the vertex of the graph of the function \(f(x) = -2x^2 + 12x + 1 \).

Solution

\[
f(x) = -2x^2 + 12x + 1
\]

\[
= -2 \left[x^2 - 6x + \frac{1}{2} \right]
\]

\[
= -2 \left[(x-3)^2 - 9 + \frac{1}{2} \right]
\]

\[
= -2 \left[(x-3)^2 - \frac{19}{2} \right]
\]

\[
= -2(x-3)^2 + 19
\]

Vertex is at \((3, 19) \).
The expression under the radical sign \(b^2 - 4ac \) is called the **discriminant** and is usually denoted by \(\Delta \). Its value enables us to find the number of real solutions to the corresponding quadratic equation.

<table>
<thead>
<tr>
<th>Discriminant</th>
<th>Number of real solutions</th>
<th>Typical graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta = b^2 - 4ac > 0)</td>
<td>Two distinct real solutions (two (x)-intercepts)</td>
<td></td>
</tr>
<tr>
<td>(\Delta = b^2 - 4ac = 0)</td>
<td>One real solution (one (x)-intercept)</td>
<td></td>
</tr>
<tr>
<td>(\Delta = b^2 - 4ac < 0)</td>
<td>No real solutions (no (x)-intercepts)</td>
<td></td>
</tr>
</tbody>
</table>

Example 5-8

How many real solutions do the following equations have?

- \(a \quad x^2 + x + 2 = 0 \)
- \(b \quad -x^2 - 2x + 5 = 0 \)
- \(c \quad 4x^2 + 8x + 4 = 0 \)

Solution

- \(a \quad a = 1, \ b = 1, \ c = 2 \)

 Hence \(\Delta = b^2 - 4ac \)

 \[= (1)^2 - 4(1)(2) \]

 \[= 1 - 8 \]

 \[= -7 \]

 \[< 0 \]

 \(\therefore \) no real solutions

COMMON MISTAKE

Don’t confuse the discriminant and the quadratic formula. The discriminant only tells you how many solutions there are; the quadratic formula gives the actual values.
Step 3 – A vertical stretch by a scale factor of $\frac{1}{3}$: $y = \frac{1}{3}(2x - 4)^2$

Step 4 – A vertical translation of 2 units upward: $y = \frac{1}{3}(2x - 4)^2 + 2$

Warm-up Exercise 5D

The graph of $y = f(x)$ is shown below.

Sketch the graph of each of the following:

a. $y = f(x) + 3$

b. $y = f(x + 3)$

c. $y = -f(x)$

d. $y = f(x - 3)$

e. $y = f(2x)$

f. $y = 2f(x)$
The graph of \(y = f(x) \) is shown below.

Sketch the graph of each of the following:

\[
\begin{align*}
\text{a} & \quad y = f(x) + 2 \\
\text{b} & \quad y = f(x - 2) \\
\text{c} & \quad y = f(-x) \\
\text{d} & \quad y = -f(x + 3) \\
\text{e} & \quad y = f(2x) \\
\text{f} & \quad y = 2f(x)
\end{align*}
\]

The graph of \(y = f(x) \) is shown below:

Sketch the graph of the following functions.

\[
\begin{align*}
\text{a} & \quad y = f(x) - 1 \\
\text{b} & \quad y = f(x + 2) \\
\text{c} & \quad y = f(-x) \\
\text{d} & \quad y = -f(x) \\
\text{e} & \quad y = f(2x) \\
\text{f} & \quad y = \frac{1}{2}f(x)
\end{align*}
\]

Describe exactly the two transformations required to obtain the graph of each of the following from the graph of \(y = f(x) \).

\[
\begin{align*}
\text{a} & \quad y = 2f(x) + 4 \\
\text{b} & \quad y = 2f(2x) \\
\text{c} & \quad y = f(-x) + 3 \\
\text{d} & \quad y = -f(x + 2)
\end{align*}
\]
Express the function \(g(x) \) in terms of \(f(x) \) where the graph of \(y = g(x) \) can be obtained by applying the following transformations to the graph of \(y = f(x) \).

a. Translate by the vector \(\begin{pmatrix} -2 \\ 3 \end{pmatrix} \).
b. Move downward 2 units and then move to the right by 3 units.
c. Move to the left 3 units and then stretch vertically by a factor of \(\frac{1}{2} \).
d. Reflect about the \(x \)-axis and then stretch horizontally by a factor of \(\frac{1}{5} \).
e. Stretch horizontally by a factor of 3 and then stretch vertically by a factor of \(\frac{1}{3} \).
f. Reflect about the \(y \)-axis and then move downward by 2 units.
g. Move upward by 7 units and then reflect about the \(x \)-axis.

Exam Practice 5D

Paper 1

1. The graph of \(y = f(x) \), \(-3 \leq x \leq 3\), is shown below. Sketch the graph of \(y = f(x-1)+2 \) on the same axes.

2. The graph of \(y = f(x) \) is transformed into the graph of \(y = 5f(x-3)+1 \). Give a full geometric description of this transformation.
3 The graph of \(y = f(x), \ -3 \leq x \leq 3 \), is shown below. Sketch the graph of
\[y = -f(2x) \] on the same axes.

![Graph of \(y = f(x) \) and \(y = -f(2x) \)]

4 The graph of \(y = f(x), \ -4 \leq x \leq 4 \), is shown below. The point \(A(3,1) \) lies on the graph, \(x = 2 \) is a vertical asymptote, and \(y = 0 \) is a horizontal asymptote.

a Write down the equation of the new \(x \)-asymptote if \(f(x) \) is translated 3 units to the left.

b Sketch the graph of \(y = f(x+3) - 2 \) on the same axes.

c The point \(A \) on the graph of \(f \) is mapped to the point \(A' \) on the graph of
\[y = f(x + 3) - 2 \]. Find the coordinates of \(A' \).

5 The graph of \(y = f(x), \ -4 \leq x \leq 4 \), is shown below. Draw the graph of
\[y = -f(x) - 2 \] on the same axes. Mark \(A' \) and \(B' \), the image of \(A \) and \(B \) respectively, on your graph, together with their coordinates.

![Graph of \(y = f(x) \) and \(y = -f(x) - 2 \)]
Summary

Quadratic functions

The graph of a quadratic function looks like this:

\[y = f(x) \]

\[x = \frac{-b}{2a} \text{ or } x = \frac{(p+q)}{2} \]

We can express the quadratic function in:

1. **General form** \(f(x) = ax^2 + bx + c \)
 - The parabola opens upward if \(a > 0 \) and the parabola opens downward if \(a < 0 \). The \(y \)-intercept is \(c \).
 - The axis of symmetry can be found by \(x = \frac{-b}{2a} \).

2. **Vertex form (completed square form)** \(f(x) = a(x - h)^2 + k \)
 - The point \((h, k) \) is the vertex of the graph of \(f \).
 - The axis of symmetry is \(x = h \).

3. **Intercept form** \(f(x) = a(x - p)(x - q) \)
 - The \(x \)-intercepts of the graph of \(f \) are \(p \) and \(q \).
 - The axis of symmetry can be found using \(x = \frac{p + q}{2} \).

The number of real roots can be determined by the discriminant \(\Delta = b^2 - 4ac \).
- If \(\Delta > 0 \) \(\Rightarrow \) two distinct real roots.
- If \(\Delta = 0 \) \(\Rightarrow \) one root (repeated root, equal roots).
- If \(\Delta < 0 \) \(\Rightarrow \) no real roots.

Inverse functions

The graph of the inverse function \(f^{-1}(x) \) is the reflection of the graph \(f(x) \) about the line \(y = x \).